When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm.

  3. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Formally, if one expands () (), the terms are precisely (), where is either 0 or 1, accordingly as whether is included in the product or not, and k is the number of that are included, so the total number of factors in the product is n (counting with multiplicity k) – as there are n binary choices (include or x), there are terms ...

  4. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Polarization of an algebraic form - Wikipedia

    en.wikipedia.org/wiki/Polarization_of_an...

    In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  8. Simons' formula - Wikipedia

    en.wikipedia.org/wiki/Simons'_formula

    the only tools involved are the Codazzi equation (equalities #2 and 4), the Gauss equation (equality #4), and the commutation identity for covariant differentiation (equality #3). The more general case of a hypersurface in a Riemannian manifold requires additional terms to do with the Riemann curvature tensor . [ 4 ]

  9. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    Viète obtained his formula by comparing the areas of regular polygons with 2 n and 2 n + 1 sides inscribed in a circle. [1] [2] The first term in the product, /, is the ratio of areas of a square and an octagon, the second term is the ratio of areas of an octagon and a hexadecagon, etc.