Ad
related to: discriminant math calculator
Search results
Results From The WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
The above formula shows that its Lie algebra is the special linear Lie algebra consisting of those matrices having trace zero. Writing a 3 × 3 {\displaystyle 3\times 3} -matrix as A = [ a b c ] {\displaystyle A={\begin{bmatrix}a&b&c\end{bmatrix}}} where a , b , c {\displaystyle a,b,c} are column vectors of length 3, then the gradient over one ...
For a function f of three or more variables, there is a generalization of the rule shown above. In this context, instead of examining the determinant of the Hessian matrix, one must look at the eigenvalues of the Hessian matrix at the critical point.
Let D be the discriminant of the field, n be the degree of K over , and = be the number of complex embeddings where is the number of real embeddings.Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound
The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative. The resultant of two polynomials with rational or polynomial coefficients may be computed efficiently on a computer.