When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energymomentum_relation

    The energy and momentum of an object measured in two inertial frames in energymomentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.

  3. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.

  4. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Specific energy: Energy density per unit mass J⋅kg −1: L 2 T −2: intensive Specific heat capacity: c: Heat capacity per unit mass J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a ...

  5. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (p x, p y, p z) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is = (,,,) = (,,,). The quantity mv of above is the ordinary non-relativistic momentum of the particle and m its rest mass. The four-momentum is useful in ...

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    The momentum and energy equations also apply to the motions of objects that begin together and then move apart. For example, an explosion is the result of a chain reaction that transforms potential energy stored in chemical, mechanical, or nuclear form into kinetic energy, acoustic energy, and electromagnetic radiation.

  8. Stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Stress–energy_tensor

    The stress–energy tensor, sometimes called the stress–energymomentum tensor or the energymomentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.

  9. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.