Search results
Results From The WOW.Com Content Network
Archimedes of Syracuse [a] (/ ˌ ɑːr k ɪ ˈ m iː d iː z / AR-kim-EE-deez; [2] c. 287 – c. 212 BC) was an Ancient Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. [3]
The Archimedes Palimpsest is a parchment codex palimpsest, originally a Byzantine Greek copy of a compilation of Archimedes and other authors. It contains two works of Archimedes that were thought to have been lost (the Ostomachion and the Method of Mechanical Theorems ) and the only surviving original Greek edition of his work On Floating ...
Archimedes' investigation of paraboloids was possibly an idealization of the shapes of ships' hulls. Some of the paraboloids float with the base under water and the summit above water, similar to the way that icebergs float. Of Archimedes' works that survive, the second book of On Floating Bodies is considered his most mature work. [6]
Physics is a branch of science in which the primary objects of study are matter and energy.These topics were discussed by philosophers across many cultures in ancient times, but they had no means to distinguish causes of natural phenomena from superstitions.
384–322 BCE – Aristotle: Aristotelian physics, earliest effective theory of physics [2] c. 300 BCE – Euclid: Euclidean geometry; c. 250 BCE – Archimedes: Archimedes' principle; 310–230 BCE – Aristarchos: Proposed heliocentricism [3] 276–194 BCE – Eratosthenes: Circumference of the Earth measured
The fundamental principles of hydrostatics and dynamics were given by Archimedes in his work On Floating Bodies (Ancient Greek: Περὶ τῶν ὀχουμένων), around 250 BC. In it, Archimedes develops the law of buoyancy, also known as Archimedes' principle.
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics .
Archimedes did not admit the method of indivisibles as part of rigorous mathematics, and therefore did not publish his method in the formal treatises that contain the results. In these treatises, he proves the same theorems by exhaustion, finding rigorous upper and lower bounds which both converge to the answer required. Nevertheless, the ...