Ad
related to: liouville number
Search results
Results From The WOW.Com Content Network
In number theory, a Liouville number is a real number with the property that, for every positive integer, there exists a pair of integers (,) with > such that < | | <. The inequality implies that Liouville numbers possess an excellent sequence of rational number approximations.
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers , and −1 if it is the product of an odd number of primes.
In other words, the n th digit of this number is 1 only if n is one of 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers ...
A Liouville number is defined to have infinite measure of irrationality. Roth's theorem says that irrational real algebraic numbers have measure of irrationality 1. Measure of transcendence of a complex number
Liouville worked in a number of different fields in mathematics, including number theory, complex analysis, differential geometry and topology, but also mathematical physics and even astronomy. He is remembered particularly for Liouville's theorem.
In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844 [1]), states that every bounded entire function must be constant. That is, every holomorphic function f {\displaystyle f} for which there exists a positive number M {\displaystyle M} such that | f ( z ) | ≤ M ...
The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.
This knowledge enabled Liouville, in 1844, to produce the first explicit transcendental number. Later, the proofs that π and e are transcendental were obtained by a similar method. Diophantine approximations and transcendental number theory are very close areas that share many theorems and methods.