When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Biomechanics of sprint running - Wikipedia

    en.wikipedia.org/wiki/Biomechanics_of_sprint_running

    However, few suggest altering a person's running pattern in order to reduce the risk of injury. Wearable technology companies like I Measure U are creating solutions using biomechanics data to analyse the gait of a runner in real time and provide feedback on how to change the running technique to reduce injury risk. [14]

  3. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  5. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement. The dimension of absement is length multiplied by time.

  6. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    An animated example of a Brownian motion-like random walk on a torus. In the scaling limit, random walk approaches the Wiener process according to Donsker's theorem. In mathematics, Brownian motion is described by the Wiener process, a continuous-time stochastic process named in honor of Norbert Wiener.

  7. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...

  8. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...

  9. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.