When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  3. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with unit side length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured. The cube can be represented in many ways, one of which is the ...

  4. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    In the theory of high-dimensional convex polytopes, a facet or side of a d-dimensional polytope is one of its (d − 1)-dimensional features, a ridge is a (d − 2)-dimensional feature, and a peak is a (d − 3)-dimensional feature. Thus, the edges of a polygon are its facets, the edges of a 3-dimensional convex polyhedron are its ridges, and ...

  5. Hyperrectangle - Wikipedia

    en.wikipedia.org/wiki/Hyperrectangle

    A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.

  6. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  7. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Such a figure is called simplicial if each of its regions is a simplex, i.e. in an n-dimensional space each region has n+1 vertices. The dual of a simplicial polytope is called simple. Similarly, a widely studied class of polytopes (polyhedra) is that of cubical polyhedra, when the basic building block is an n-dimensional cube.

  9. Superquadrics - Wikipedia

    en.wikipedia.org/wiki/Superquadrics

    less than 1: a pointy octahedron modified to have concave faces and sharp edges. exactly 1: a regular octahedron. between 1 and 2: an octahedron modified to have convex faces, blunt edges and blunt corners. exactly 2: a sphere; greater than 2: a cube modified to have rounded edges and corners. infinite (in the limit): a cube