Ads
related to: nickel gap paneling
Search results
Results From The WOW.Com Content Network
When constructing bulk-heterojunction solar cells, p-type nickel(II) oxide is an effective anode layer. Its function as a wide band-gap semiconductor helps planarize the anode surface, and helps maximum photon flux to reach the active layer. In this case, NiO thickness was also measured, and increasing the thickness decreases cell efficiency.
The basic working principle above, is similar in a p-type DSSC, where the dye-sensitised semiconductor is of p-type nature (typically nickel oxide). However, instead of injecting an electron into the semiconductor, in a p-type DSSC, a hole flows from the dye into the valence band of the p-type semiconductor. [14]
Shiplap is either rough-sawn 25 mm (1 in) or milled 19 mm (3 ⁄ 4 in) pine or similarly inexpensive wood between 76 and 254 mm (3 and 10 in) wide with a 9.5–12.7 mm (3 ⁄ 8 – 1 ⁄ 2 in) rabbet on opposite sides of each edge. [1]
Ternary compositions allow adjusting the band gap within the range of the involved binary compounds; however, in case of combination of direct and indirect band gap materials there is a ratio where indirect band gap prevails, limiting the range usable for optoelectronics; e.g. AlGaAs LEDs are limited to 660 nm by this. Lattice constants of the ...
Four-PCB panel. Depaneling or depanelization is a process step in high-volume electronics assembly production. In order to increase the throughput of printed circuit board (PCB) manufacturing and surface mount (SMT) lines, PCBs are often arranged in a process called panelization so that they consist of many smaller individual PCBs that will be used in the final product.
The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.