Search results
Results From The WOW.Com Content Network
Given a binary product-machines n-by-m matrix , rank order clustering [1] is an algorithm characterized by the following steps: . For each row i compute the number =; Order rows according to descending numbers previously computed
Price optimization utilizes data analysis to predict the behavior of potential buyers to different prices of a product or service. Depending on the type of methodology being implemented, the analysis may leverage survey data (e.g. such as in a conjoint pricing analysis [7]) or raw data (e.g. such as in a behavioral analysis leveraging 'big data' [8] [9]).
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
Whether you use Microsoft Office Excel, Google Sheets or Apple Numbers, there’s a free spreadsheet for you. These budgeting templates will give you a head start from simple monthly and yearly ...
Price Intelligence (or Competitive Price Monitoring) refers to the awareness of market-level pricing intricacies and the impact on business, typically using modern data mining techniques. It is differentiated from other pricing models by the extent and accuracy of the competitive pricing analysis. [ 1 ]
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
Ranking: Categorical subdivisions are ranked in ascending or descending order, such as a ranking of sales performance (the measure) by sales persons (the category, with each sales person a categorical subdivision) during a single period. A bar chart may be used to show the comparison across the sales persons.
That method is commonly used for analyzing and clustering textual data and is also related to the latent class model. NMF with the least-squares objective is equivalent to a relaxed form of K-means clustering: the matrix factor W contains cluster centroids and H contains cluster membership indicators.