Search results
Results From The WOW.Com Content Network
A pumpjack is the overground drive for a reciprocating piston pump in an oil well. [1] It is used to mechanically lift liquid out of the well if there is not enough bottom hole pressure for the liquid to flow all the way to the surface. The arrangement is often used for onshore wells. Pumpjacks are common in oil-rich areas.
'S' trap inlet to drain [further explanation needed]. The air lock phenomenon can be used in a number of useful ways. An 'S' trap (a pipe that descends from a reservoir, then curves back up, then down again) allows liquid to flow from top to bottom unhindered, and gas cannot flow through the trap unless it has enough extra pressure to overcome the liquid head of the trap.
Pump pressure, which is also referred to as system pressure loss, is the sum total of all the pressure losses from the oil well surface equipment, the drill pipe, the drill collar, the drill bit, and annular friction losses around the drill collar and drill pipe. It measures the system pressure loss at the start of the circulating system and ...
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
Hydro means water, or fluid, that exerts pressure and static means not moving or at rest. Therefore, hydrostatic pressure is the total fluid pressure created by the weight of a column of fluid, acting on any given point in a well. In oil and gas operations, it is represented mathematically as
Engine oil seeps down under gravity into the cylinder through various means (through the rings, valve guides, etc.) and can fill a cylinder with enough oil to hydrolock it. The seepage effect can be observed by the blue-white smoke commonly seen when a radial engine starts up.
The oil may be pumped back into the coupling when needed, or some designs use a gravity feed - the scoop's action is enough to lift fluid into this holding tank, powered by the coupling's rotation. Scoop control can be used for easily managed and stepless control of the transmission of very large torques.
A fluid power system has a pump driven by a prime mover (such as an electric motor or internal combustion engine) that converts mechanical energy into fluid energy, Pressurized fluid is controlled and directed by valves into an actuator device such as a hydraulic cylinder or pneumatic cylinder, to provide linear motion, or a hydraulic motor or pneumatic motor, to provide rotary motion or torque.