When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer. In that case, Newton's law only approximates the result when the temperature difference is relatively small.

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  4. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral analysis of the boundary layer and analogies between energy and momentum transfer, these analytic approaches may not offer practical solutions to all problems when there are no mathematical models applicable.

  5. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%). B Calculated values *Derived data by calculation.

  6. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    For clarity, he then described a hypothetical, but realistic variant of the experiment: If equal masses of 100 °F water and 150 °F mercury are mixed, the water temperature increases by 20 ° and the mercury temperature decreases by 30 ° (both arriving at 120 °F), even though the heat gained by the water and lost by the mercury is the same.

  7. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...

  8. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm).

  9. Equivalent temperature - Wikipedia

    en.wikipedia.org/wiki/Equivalent_temperature

    Taking a volume of air at temperature T and mixing ratio of r, drying it by condensation will restore energy to the airmass. This will depend on the latent heat release as: + where: : latent heat of evaporation (2400 kJ/kg at 25°C to 2600 kJ/kg at −40°C)