Search results
Results From The WOW.Com Content Network
cAMP represented in three ways Adenosine triphosphate. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms ...
Secondary messenger systems can be synthesized and activated by enzymes, for example, the cyclases that synthesize cyclic nucleotides, or by opening of ion channels to allow influx of metal ions, for example Ca 2+ signaling. These small molecules bind and activate protein kinases, ion channels, and other proteins, thus continuing the signaling ...
Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction: ATP = 3′,5′-cyclic AMP + diphosphate. It has key regulatory roles in essentially all cells. [2]
Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP.Its most likely mechanism of action is activation of intracellular protein kinases in response to the binding of membrane-impermeable peptide hormones to the external cell surface. [1]
In a cAMP-dependent pathway, the activated G s alpha subunit binds to and activates an enzyme called adenylyl cyclase, which, in turn, catalyzes the conversion of ATP into cyclic adenosine monophosphate (cAMP). [5] Increases in concentration of the second messenger cAMP may lead to the activation of cyclic nucleotide-gated ion channels [6]
In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase [1] whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism.
ADP + H 2 O → AMP + P i. AMP can also be formed by hydrolysis of ATP into AMP and pyrophosphate: ATP + H 2 O → AMP + PP i. When RNA is broken down by living systems, nucleoside monophosphates, including adenosine monophosphate, are formed. AMP can be regenerated to ATP as follows: AMP + ATP → 2 ADP (adenylate kinase in the opposite direction)
The signal to activate CRP is the binding of cyclic AMP. Binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP-binding domain to the C-terminal domain of the protein, which is responsible for interaction with specific sequences of DNA.