Search results
Results From The WOW.Com Content Network
cAMP represented in three ways Adenosine triphosphate. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms ...
Secondary messenger systems can be synthesized and activated by enzymes, for example, the cyclases that synthesize cyclic nucleotides, or by opening of ion channels to allow influx of metal ions, for example Ca 2+ signaling. These small molecules bind and activate protein kinases, ion channels, and other proteins, thus continuing the signaling ...
In a cAMP-dependent pathway, the activated G s alpha subunit binds to and activates an enzyme called adenylyl cyclase, which, in turn, catalyzes the conversion of ATP into cyclic adenosine monophosphate (cAMP). [5] Increases in concentration of the second messenger cAMP may lead to the activation of cyclic nucleotide-gated ion channels [6]
Cyclic adenosine monophosphate.The cyclic portion refers to the two single bonds between the phosphate group and the ribose. A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups.
ADP + H 2 O → AMP + P i. AMP can also be formed by hydrolysis of ATP into AMP and pyrophosphate: ATP + H 2 O → AMP + PP i. When RNA is broken down by living systems, nucleoside monophosphates, including adenosine monophosphate, are formed. AMP can be regenerated to ATP as follows: AMP + ATP → 2 ADP (adenylate kinase in the opposite direction)
Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction: ATP = 3′,5′-cyclic AMP + diphosphate. It has key regulatory roles in essentially all cells. [2]
In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase [1] whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism.
Forskolin is used in biochemistry experiments to raise levels of cyclic AMP (cAMP) in studies of cell physiology. [2] [3] Forskolin activates the enzyme adenylyl cyclase and increases intracellular levels of cAMP. cAMP is an important second messenger necessary for the proper biological response of cells to hormones and other extracellular signals.