Ads
related to: adenine synthesis
Search results
Results From The WOW.Com Content Network
Adenine is one of the two purine nucleobases (the other being guanine) used in forming nucleotides of the nucleic acids. In DNA, adenine binds to thymine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. In RNA, which is used for protein synthesis, adenine binds to uracil.
[22] [23] The MTAP enzyme is responsible for nearly all the adenine synthesis in the human body. [20] Adenine is one of the purine bases of nucleic acids, which build both DNA and RNA. Through the recovery of adenine, MTAP plays an indirect role in the synthesis of DNA and RNA.
Mycophenolate mofetil is an immunosuppressant drug used to prevent rejection in organ transplantation; it inhibits purine synthesis by blocking inosine monophosphate dehydrogenase (IMPDH). [5] Methotrexate also indirectly inhibits purine synthesis by blocking the metabolism of folic acid (it is an inhibitor of the dihydrofolate reductase).
DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure.
Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. [3] Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide.
The purine nitrogenous bases are characterized by their single amino group (−NH 2), at the C6 carbon in adenine and C2 in guanine. [5] Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine , so those three bases are called the pyrimidine bases .
Nicotinate salvage is the process of regenerating nicotinamide adenine dinucleotide from nicotinic acid. This pathway is important for controlling the level of oxidative stress in cells. The human gene NAPRT encodes the main enzyme in the pathway. [5] Cancer cells, which have increased NAD requirements, tend to upregulate the pathway. [6]
In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group , which may be in the form of FAD or flavin mononucleotide (FMN).