Search results
Results From The WOW.Com Content Network
Permittivity as a function of frequency can take on real or complex values. In SI units, permittivity is measured in farads per meter (F/m or A 2 ·s 4 ·kg −1 ·m −3). The displacement field D is measured in units of coulombs per square meter (C/m 2), while the electric field E is measured in volts per meter (V/m).
Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space , the electric constant , or the distributed capacitance of the vacuum.
The relative permittivity is an essential piece of information when designing capacitors, and in other circumstances where a material might be expected to introduce capacitance into a circuit. If a material with a high relative permittivity is placed in an electric field , the magnitude of that field will be measurably reduced within the volume ...
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
A capacitor is a discrete electrical circuit component typically made of a dielectric placed between conductors. One lumped element model of a capacitor includes a lossless ideal capacitor in series with a resistor termed the equivalent series resistance (ESR), as shown in the figure below. [4] The ESR represents losses in the capacitor.
It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.
It is common for electrical components to have slightly reduced capacitances at extreme frequencies, due to slight inductance of the internal conductors used to make capacitors (not just the leads), and permittivity changes in insulating materials with frequency: C is very nearly, but not quite a constant.
In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).