Ad
related to: radar distance range comparison
Search results
Results From The WOW.Com Content Network
At any range, with similar azimuth and elevation angles and as viewed by a radar with an unmodulated pulse, the range resolution is approximately equal in distance to half of the pulse duration times the speed of light (approximately 300 meters per microsecond). Radar echoes, showing a representation of the carrier
Radar cross-section (RCS), denoted σ, also called radar signature, is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected. [1] An object reflects a limited amount of radar energy back to the source. The factors that influence this include: [1] the material with which the target is made;
AN/FPS-5 long Range Search Radar; AN/FPS-6 height finder; AN/FPS-7 Long Range Search Radar; AN/FPS-8 Medium Range Search Radar; AN/FPS-10 medium-range search/height finder Radar (stripped-down version of the AN/CPS-6B) AN/FPS-14 Medium-range search Radar; AN/FPS-16 tracking radar; AN/FPS-17 detection radar; AN/FPS-18 Medium-range search Radar
The radar measures the distance to the reflector by measuring the time of the round trip from emission of a pulse to reception, dividing this by two, and then multiplying by the speed of light. To be accepted, the received pulse has to lie within a period of time called the range gate .
MADRE over-the-horizon radar at the NRL's Chesapeake Bay Detachment U.S. Navy Relocatable Over-the-Horizon Radar station. The most common type of OTH radar, OTH-B (backscatter), [3] uses skywave or "skip" propagation, in which shortwave radio waves are refracted off an ionized layer in the atmosphere, the ionosphere, and return to Earth some distance away.
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar. [1] [2] [3]
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Below 3 MHz, the whole volume of the air acts as a waveguide to fill in the radar shadow and also reduces radar sensitivity above the duct zone. Ducting fills in the shadow zone, extends the distance of the clutter zone, and can create reflections for low PRF radar that are beyond the instrumented range.