Search results
Results From The WOW.Com Content Network
The replication of DNA in eukaryotic cells is carried out by a complex chromosomal replication apparatus, in which DNA polymerase alpha and primase are two key enzymatic components. Primase, which is a heterodimer of a small subunit and a large subunit, synthesizes small RNA primers for the Okazaki fragments made during discontinuous DNA ...
This gene encodes the p180 catalytic subunit of DNA polymerase α-primase. Pol α has limited processivity and lacks 3′ exonuclease activity for proofreading errors. Thus it is not well suited to efficiently and accurately copy long templates (unlike Pol Delta and Epsilon). Instead it plays a more limited role in replication.
DNA polymerase alpha, like DNA primase, contains iron-sulfur clusters, that are critical in electron transport that uses DNA itself to transfer electrons at very high speeds; this process is involved in detecting DNA damage, and may also be involved in a feedback between the primase complex and the DNA polymerase alpha.
It has an AEP superfamily polymerase/primase domain, a 3'-phosphoesterase domain, and a ligase domain. It is also capable of primase, DNA and RNA polymerase, and terminal transferase activity. DNA polymerization activity can produce chains over 7000 nucleotides (7 kb) in length, while RNA polymerization produces chains up to 1 kb long. [21]
[5] [6] [7] PrimPol is a eukaryotic protein with both DNA polymerase and DNA Primase activities involved in translesion DNA synthesis. It is the first eukaryotic protein to be identified with priming activity using deoxyribonucleotides. [6] [7] It is also the first protein identified in the mitochondria to have translesion DNA synthesis activities.
Uracil DNA glycosylase flips a uracil residue out of the duplex, shown in yellow. DNA glycosylases are responsible for initial recognition of the lesion. They flip the damaged base out of the double helix, as pictured, and cleave the N-glycosidic bond of the damaged base, leaving an AP site. There are two categories of glycosylases ...
Nucleotide excision repair is a DNA repair mechanism. [2] DNA damage occurs constantly because of chemicals (e.g. intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR).
It has also been used with the steroid sulfatase gene. [2] In 2008, multiplex-PCR was used for analysis of microsatellites and SNPs . [ 3 ] In 2020, RT-PCR multiplex assays were designed that combined multiple gene targets from the Center for Diseases and Control in a single reaction to increase molecular testing accessibility and throughput ...