When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.

  4. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    This gives the expected results of 4 π steradians for the 3D sphere bounded by a surface of area 4πr 2 and 2 π radians for the 2D circle bounded by a circumference of length 2πr. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [− r , r ] and this is bounded by two ...

  5. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Sphere packing finds practical application in the stacking of cannonballs.. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space.

  6. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Square–cube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.

  7. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    In his work, Archimedes showed that the surface area of a cylinder is equal to: = + = (+). and that the volume of the same is: =. [3] On the sphere, he showed that the surface area is four times the area of its great circle. In modern terms, this means that the surface area is equal to:

  8. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  9. Specific surface area - Wikipedia

    en.wikipedia.org/wiki/Specific_surface_area

    Scratches, represented by triangular-shaped grooves, make the surface area greater. Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, [1] (with units of m 2 /kg or m 2 /g). Alternatively, it may be defined as SA per solid or bulk volume [2] [3] (units of m 2 /m 3 or m −1).