Search results
Results From The WOW.Com Content Network
In a region of homogeneous density, a spherical embedded lens would correspond to the symmetric concentration of a spherical locality's mass into a smaller sphere (or a point) at its center. For a cosmological lens, if the universe has a non-vanishing cosmological constant Λ, then Λ is required to be the same inside and outside of the void.
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by θ ∈ [ 0 , π ] {\displaystyle \theta \in [0,\pi ]} : it is the angle between the z -axis and the radial vector connecting the origin to the point in ...
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
[31] [32] As shown above, the Gaussian lens equation for a spherical lens is derived such that the 2nd surface of the lens images the image made by the 1st lens surface. For multi-lens imaging, 3rd lens surface (the front surface of the 2nd lens) can image the image made by the 2nd surface, and 4th surface (the back surface of the 2nd lens) can ...
In weak lensing by large-scale structure, the thin-lens approximation may break down, and low-density extended structures may not be well approximated by multiple thin-lens planes. In this case, the deflection can be derived by instead assuming that the gravitational potential is slowly varying everywhere (for this reason, this approximation is ...
The first lenses were likely spherical or cylindrical glass containers filled with water, which people noticed had the ability to focus light. Simple convex lenses have surfaces that are small sections of a sphere. A ball lens is just a simple lens where the surfaces' radii of curvature are equal to the radius of the lens itself.
The mass of any of the discs is the mass of the sphere multiplied by the ratio of the volume of an infinitely thin disc divided by the volume of a sphere (with constant radius ). The volume of an infinitely thin disc is π R 2 d x {\displaystyle \pi R^{2}\,dx} , or π ( a 2 − x 2 ) d x {\textstyle \pi \left(a^{2}-x^{2}\right)dx} .
A diagram showing how to find the optical center O of a spherical lens. N and N' are the lens's nodal points. The optical center of a spherical lens is a point such that if a ray passes through it, the ray's path after leaving the lens will be parallel to its path before it entered.