Search results
Results From The WOW.Com Content Network
Structure Correlation Coefficients: The correlation between each predictor and the discriminant score of each function. This is a zero-order correlation (i.e., not corrected for the other predictors). [15] Standardized Coefficients: Each predictor's weight in the linear combination that is the discriminant function.
where the discriminant is zero if and only if the two roots are equal. If a, b, c are real numbers, the polynomial has two distinct real roots if the discriminant is positive, and two complex conjugate roots if it is negative. [6] The discriminant is the product of a 2 and the square of the difference of the roots.
Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed. Instead, it assumes a weaker hypothesis that the distribution of this difference is symmetric around a central value and it aims to test whether this center value differs significantly from zero.
For example, seasonal effects may be captured by creating dummy variables for each of the seasons: D1=1 if the observation is for summer, and equals zero otherwise; D2=1 if and only if autumn, otherwise equals zero; D3=1 if and only if winter, otherwise equals zero; and D4=1 if and only if spring, otherwise equals zero. In the panel data fixed ...
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
Several authors have considered tests in this context, for both regression and grouped-data situations. [28] [29] Bartlett's test for heteroscedasticity between grouped data, used most commonly in the univariate case, has also been extended for the multivariate case, but a tractable solution only exists for 2 groups. [30]
The F-test is computed by dividing the explained variance between groups (e.g., medical recovery differences) by the unexplained variance within the groups. Thus, = If this value is larger than a critical value, we conclude that there is a significant difference between groups.