Ads
related to: examples of algebraic sentence problems 6th class maths question and answerstudy.com has been visited by 100K+ users in the past month
smartholidayshopping.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
A valid number sentence that is true: 83 + 19 = 102. A valid number sentence that is false: 1 + 1 = 3. A valid number sentence using a 'less than' symbol: 3 + 6 < 10. A valid number sentence using a 'more than' symbol: 3 + 9 > 11. An example from a lesson plan: [6] Some students will use a direct computational approach.
An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.
Hilbert continues: [6] Following this purely algebraic problem I would like to raise a question that, it seems to me, can be attacked by the same method of continuous coefficient changing, and whose answer is of similar importance to the topology of the families of curves defined by differential equations – that is the question of the upper ...
Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [h] unresolved, and 4 and 23 as too vague to ever be described as solved. The withdrawn 24 would also be in this class.
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.
For instance, if the one solving the math word problem has a limited understanding of the language (English, Spanish, etc.) they are more likely to not understand what the problem is even asking. In Example 1 (above), if one does not comprehend the definition of the word "spent," they will misunderstand the entire purpose of the word problem.