Search results
Results From The WOW.Com Content Network
In electronics, a wafer (also called a slice or substrate) [1] is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon
Wafer fabrication is a procedure composed of many repeated sequential processes to produce complete electrical or photonic circuits on semiconductor wafers in a semiconductor device fabrication process. Examples include production of radio frequency amplifiers, LEDs, optical computer components, and microprocessors for computers. Wafer ...
Wafer carriers or cassettes, which can hold several wafers at once, were developed to carry several wafers between process steps, but wafers had to be individually removed from the carrier, processed and returned to the carrier, so acid-resistant carriers were developed to eliminate this time consuming process, so the entire cassette with ...
wafer-to-wafer (also wafer-on-wafer) stacking – bonding and integrating whole processed wafers atop one another before dicing the stack into dies wire bonding – using tiny wires to interconnect an IC or other semiconductor device with its package (see also thermocompression bonding, flip chip, hybrid bonding, etc.)
These wafers are then polished to a mirror finish before going through photolithography. In many steps the transistors are manufactured and connected with metal interconnect layers. These prepared wafers then go through wafer testing to test their functionality. The wafers are then sliced and sorted to filter out the faulty dies.
The origin of the 90 nm value is historical; it reflects a trend of 70% scaling every 2–3 years. The naming is formally determined by the International Technology Roadmap for Semiconductors (ITRS). The 300 mm wafer size became mainstream at the 90 nm node. The previous wafer size was 200 mm diameter.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The origins of the TSV concept can be traced back to William Shockley's patent "Semiconductive Wafer and Method of Making the Same" filed in 1958 and granted in 1962, [7] [8] which was further developed by IBM researchers Merlin Smith and Emanuel Stern with their patent "Methods of Making Thru-Connections in Semiconductor Wafers" filed in 1964 ...