Search results
Results From The WOW.Com Content Network
Pages in category "Cardinal numbers" The following 43 pages are in this category, out of 43 total. ... Cardinal and Ordinal Numbers; Cardinal assignment;
The logarithm of an infinite cardinal number κ is defined as the least cardinal number μ such that κ ≤ 2 μ. Logarithms of infinite cardinals are useful in some fields of mathematics, for example in the study of cardinal invariants of topological spaces , though they lack some of the properties that logarithms of positive real numbers possess.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
Notably, ℵ ω is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers 2 ℵ 0: For any natural number n ≥ 1, we can consistently assume that 2 ℵ 0 = ℵ n, and moreover it is possible to assume that 2 ℵ 0 is as least as large ...
The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, V κ satisfies "there is an unbounded class of cardinals satisfying φ".
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .