Search results
Results From The WOW.Com Content Network
Here, the degrees of freedom arises from the residual sum-of-squares in the numerator, and in turn the n − 1 degrees of freedom of the underlying residual vector {¯}. In the application of these distributions to linear models, the degrees of freedom parameters can take only integer values.
Once the t value and degrees of freedom are determined, a p-value can be found using a table of values from Student's t-distribution. If the calculated p -value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
has the Studentized range distribution for n groups and ν degrees of freedom. In applications, the x i are typically the means of samples each of size m, s 2 is the pooled variance, and the degrees of freedom are ν = n(m − 1). The critical value of q is based on three factors: α (the probability of rejecting a true null hypothesis)
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x; the magnitude of x with the sign set to +, regardless of the original sign of x.) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution.
The degrees of freedom are not based on the number of observations as with a Student's t or F-distribution. For example, if testing for a fair, six-sided die, there would be five degrees of freedom because there are six categories or parameters (each number); the number of times the die is rolled does not influence the number of degrees of freedom.
When only the equality of the two groups means is in question (i.e. whether μ 1 = μ 2), the studentized range distribution is similar to the Student's t distribution, differing only in that the first takes into account the number of means under consideration, and the critical value is adjusted accordingly. The more means under consideration ...