When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Set and drift - Wikipedia

    en.wikipedia.org/wiki/Set_and_drift

    To understand and calculate set and drift, one needs to first understand currents. Ocean currents are the horizontal movements of water from one location to another. The movement of water is impacted by: meteorological effects, wind, temperature differences, gravity, and on occasion earthquakes. Set is the current's direction, expressed in true ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    However, Rv produces a rotation in the opposite direction with respect to wR. Throughout this article, rotations produced on column vectors are described by means of a pre-multiplication. To obtain exactly the same rotation (i.e. the same final coordinates of point P), the equivalent row vector must be post-multiplied by the transpose of R (i.e ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...

  5. Hodograph - Wikipedia

    en.wikipedia.org/wiki/Hodograph

    One has to notice that direction are plotted as mentioned in the upper right corner. With the hodograph and thermodynamic diagrams like the tephigram, meteorologists can calculate: Wind shear: The lines uniting the extremities of successive vectors represent the variation in direction and value of the wind in a layer of the atmosphere.

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Apparent wind - Wikipedia

    en.wikipedia.org/wiki/Apparent_wind

    The apparent wind is the wind experienced by an observer in motion and is the relative velocity of the wind in relation to the observer. [citation needed]The velocity of the apparent wind is the vector sum of the velocity of the headwind (which is the velocity a moving object would experience in still air) plus the velocity of the true wind.

  8. Heading (navigation) - Wikipedia

    en.wikipedia.org/wiki/Heading_(navigation)

    The drift angle (shaded red) is due to the wind velocity (W/V, in green). In navigation, the heading of a vessel or aircraft is the compass direction in which the craft's bow or nose is pointed. Note that the heading may not necessarily be the direction that the vehicle actually travels, which is known as its course.

  9. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)