When.com Web Search

  1. Ad

    related to: divisibility test for numbers 1

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number. To test divisibility by any number expressed as the product of prime factors p 1 n p 2 m p 3 q {\displaystyle p_{1}^{n}p_{2}^{m}p_{3}^{q}} , we can separately test for ...

  3. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. [1] This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [2]

  4. 1001 (number) - Wikipedia

    en.wikipedia.org/wiki/1001_(number)

    The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors of 1001. First, the digits of the number being tested are grouped in blocks ...

  5. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    Given an integer n (n refers to "the integer to be factored"), the trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on.

  6. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    For these numbers, repeated application of the Fermat primality test performs the same as a simple random search for factors. While Carmichael numbers are substantially rarer than prime numbers (Erdös' upper bound for the number of Carmichael numbers [ 3 ] is lower than the prime number function n/log(n) ) there are enough of them that Fermat ...

  7. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    2.1 Comparison test. 2.2 Integral test. ... Divisibility No harmonic numbers ... is the least common multiple of the numbers from 1 to , then can be ...

  8. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...

  9. Harshad number - Wikipedia

    en.wikipedia.org/wiki/Harshad_number

    The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).