Ads
related to: text above generator tool image on excel page
Search results
Results From The WOW.Com Content Network
Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI. As with other text-to-image models, Flux generates images from natural language descriptions, called prompts.
Ideogram is a freemium text-to-image model developed by Ideogram, Inc. using deep learning methodologies to generate digital images from natural language descriptions known as prompts. The model is capable of generating legible text in the images compared to other text-to-image models. [1] [2]
Text-to-Image personalization is a task in deep learning for computer graphics that augments pre-trained text-to-image generative models. In this task, a generative model that was trained on large-scale data (usually a foundation model ), is adapted such that it can generate images of novel, user-provided concepts.
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
DALL-E, DALL-E 2, and DALL-E 3 (stylised DALL·E, and pronounced DOLL-E) are text-to-image models developed by OpenAI using deep learning methodologies to generate digital images from natural language descriptions known as prompts. The first version of DALL-E was announced in January 2021. In the following year, its successor DALL-E 2 was released.
While the cats in the above video look as if they are kneading biscuits, they are actually displaying a common feline behavior called kneading. Lots of cats do it, and some owners love it while ...
The 1983 NFL Draft is celebrated for its quarterbacks, and for good reason. It produced three of the greatest quarterbacks ever: John Elway, Dan Marino and Jim Kelly.
Above: An image classifier, an example of a neural network trained with a discriminative objective. Below: A text-to-image model, an example of a network trained with a generative objective. Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data.