When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    It is a nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are ...

  3. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing ...

  4. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.

  5. Isomap - Wikipedia

    en.wikipedia.org/wiki/Isomap

    Isomap is a nonlinear dimensionality reduction method. It is one of several widely used low-dimensional embedding methods. [1] Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points.

  6. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    It is a form of non-linear dimensionality reduction. Given a distance matrix with the distances between each pair of objects in a set, and a chosen number of dimensions, N, an MDS algorithm places each object into N-dimensional space (a lower-dimensional representation) such that the between-object distances are preserved as well as possible.

  7. Johnson–Lindenstrauss lemma - Wikipedia

    en.wikipedia.org/wiki/Johnson–Lindenstrauss_lemma

    The lemma has applications in compressed sensing, manifold learning, dimensionality reduction, graph embedding, and natural language processing. Much of the data stored and manipulated on computers, including text and images, can be represented as points in a high-dimensional space (see vector space model for the case of text).

  8. Dying To Be Free - The Huffington Post

    projects.huffingtonpost.com/dying-to-be-free...

    The last image we have of Patrick Cagey is of his first moments as a free man. He has just walked out of a 30-day drug treatment center in Georgetown, Kentucky, dressed in gym clothes and carrying a Nike duffel bag.

  9. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    In most cases, the dimensionality of the latent space is chosen to be lower than the dimensionality of the feature space from which the data points are drawn, making the construction of a latent space an example of dimensionality reduction, which can also be viewed as a form of data compression. [1]