When.com Web Search

  1. Ads

    related to: find the hypotenuse worksheet pdf free classroom code

Search results

  1. Results From The WOW.Com Content Network
  2. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the two legs. Mathematically, this can be written as a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , where a is the length of one leg, b is the length of ...

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  4. Talk:Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Talk:Hypotenuse

    In geometry, a hypotenuse is the longest side of a right-angled triangle. This is always the side opposite the right angle. The length of the hypotenuse can be found using the famous Pythagorean theorem. It's shorter, quite short for most introductions, but it removes information better suited for other pages.

  5. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).

  7. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    The hypotenuse c (which is always odd) is the sum of two squares. This requires all of its prime factors to be primes of the form 4n + 1. [16] Therefore, c is of the form 4n + 1. A sequence of possible hypotenuse numbers for a primitive Pythagorean triple can be found at (sequence A008846 in the OEIS).

  8. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem.

  9. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.