When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    A positive divisor of that is different from is called a proper divisor or an aliquot part of (for example, the proper divisors of 6 are 1, 2, and 3). A number that does not evenly divide n {\displaystyle n} but leaves a remainder is sometimes called an aliquant part of n . {\displaystyle n.}

  3. Divisibility (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Divisibility_(ring_theory)

    When R is commutative, the notions of left divisor, right divisor, and two-sided divisor coincide, so one says simply that a is a divisor of b, or that b is a multiple of a, and one writes . Elements a and b of an integral domain are associates if both a ∣ b {\displaystyle a\mid b} and b ∣ a {\displaystyle b\mid a} .

  4. Unitary divisor - Wikipedia

    en.wikipedia.org/wiki/Unitary_divisor

    In mathematics, a natural number a is a unitary divisor (or Hall divisor) of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

  5. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Every common divisor of a and b is a divisor of gcd(a, b). gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = a⋅p + b⋅q, where p and q are integers. This expression is called Bézout's identity.

  6. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only list positive divisors.

  7. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    Euclidean division is the mathematical formulation of the outcome of the usual process of division of integers. It asserts that, given two integers, a, the dividend, and b, the divisor, such that b ≠ 0, there are unique integers q, the quotient, and r, the remainder, such that a = bq + r and 0 ≤ r < | b |, where | b | denotes the absolute ...

  8. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Furthermore, if b 1, b 2 are both coprime with a, then so is their product b 1 b 2 (i.e., modulo a it is a product of invertible elements, and therefore invertible); [6] this also follows from the first point by Euclid's lemma, which states that if a prime number p divides a product bc, then p divides at least one of the factors b, c.

  9. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    Given elements a and b of R, one says that a divides b, or that a is a divisor of b, or that b is a multiple of a, if there exists an element x in R such that ax = b. The units of R are the elements that divide 1; these are precisely the invertible elements in R. Units divide all other elements.