When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value =), the operation of multiplying by () (+) would be a multiplication by zero. However, it is not always simple to evaluate whether each operation already performed was allowed by ...

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  4. Underdetermined system - Wikipedia

    en.wikipedia.org/wiki/Underdetermined_system

    An underdetermined linear system has either no solution or infinitely many solutions. For example, + + = + + = is an underdetermined system without any solution; any system of equations having no solution is said to be inconsistent. On the other hand, the system

  5. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    This explains the existence of the quadratic, cubic, and quartic formulas, since a major result of Galois theory is that a polynomial equation has a solution in radicals if and only if its Galois group is solvable (the term "solvable group" takes its origin from this theorem).

  6. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  7. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  8. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    In that case, it will never prove that a particular polynomial equation has a solution when there is no solution in the integers. Thus, if T were complete and ω-consistent, it would be possible to determine algorithmically whether a polynomial equation has a solution by merely enumerating proofs of T until either " p has a solution" or " p has ...

  9. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In other words, it was necessary to prove only that the equation a n + b n = c n has no positive integer solutions (a, b, c) when n is an odd prime number. This follows because a solution (a, b, c) for a given n is equivalent to a solution for all the factors of n. For illustration, let n be factored into d and e, n = de. The general equation a ...