Search results
Results From The WOW.Com Content Network
The temperature of the troposphere decreases with increased altitude, and the rate of decrease in air temperature is measured with the Environmental Lapse Rate (/) which is the numeric difference between the temperature of the planetary surface and the temperature of the tropopause divided by the altitude.
A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth.
The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies ...
The increase of both ocean surface temperature and deeper ocean temperature is an important effect of climate change on oceans. [11] Deep ocean water is the name for cold, salty water found deep below the surface of Earth's oceans. Deep ocean water makes up about 90% of the volume of the oceans. Deep ocean water has a very uniform temperature ...
The solar intensity decreases as the latitude increases, reaching essentially zero at the poles. Longitudinal circulation, however, is a result of the heat capacity of water, its absorptivity, and its mixing. Water absorbs more heat than does the land, but its temperature does not rise as greatly as does the land.
The runoff from the land flows into streams and rivers and discharges into the ocean, which completes the global cycle. [5] The water cycle is a key part of Earth's energy cycle through the evaporative cooling at the surface which provides latent heat to the atmosphere, as atmospheric systems play a primary role in moving heat upward. [5]
Ocean dynamics define and describe the flow of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean dynamics has traditionally been investigated by sampling from instruments in situ. [1]
Effect of temperature and salinity upon sea water density maximum and sea water freezing temperature. It has long been known that wind can drive ocean currents, but only at the surface. [12] In the 19th century, some oceanographers suggested that the convection of heat could drive deeper currents.