Ad
related to: norton equivalent resistance calculator- For PC/Mac & Mobile
Award-Winning Antivirus & Security.
Protect 1 or 5 Devices
- Norton™ Antivirus Plus
Award Winning Antivirus
Don't Settle for Less
- Norton™ Family
Award-Winning Parental Control
Protection for Kids' Devices
- AntiVirus Plus
Save on Norton™ AntiVirus Plus
Instant Download - Shop Online Now!
- Norton™ AntiTrack
More Privacy. Less Tracking.
Disguise Your Digital Fingerprint.
- Mobile Security 33% OFF
Norton™ Mobile Security for Only
$19.99 for Android. Save Now!
- For PC/Mac & Mobile
Search results
Results From The WOW.Com Content Network
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here; the individual linked articles should be consulted. The number of equivalent circuits that a linear network can be transformed into is unbounded.
Application of Thévenin's theorem and Norton's theorem gives the quantities associated with the equivalence. Specifically, given a real current source, which is an ideal current source I {\displaystyle I} in parallel with an impedance Z {\displaystyle Z} , applying a source transformation gives an equivalent real voltage source, which is an ...
The equivalent resistance R th is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced by an open circuit (i.e., the sources are set to provide zero voltages and currents).
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
In circuit analysis, a current source having finite internal resistance is modeled by placing the value of that resistance across an ideal current source (the Norton equivalent circuit). However, this model is only useful when a current source is operating within its compliance voltage.
Figure 4. These circuits are equivalent: (A) A resistor at nonzero temperature with internal thermal noise; (B) Its Thévenin equivalent circuit: a noiseless resistor in series with a noise voltage source; (C) Its Norton equivalent circuit: a noiseless resistance in parallel with a noise current source.
All devices and connections have non-zero resistance and reactance, and therefore no device can be a perfect source. The output impedance is often used to model the source's response to current flow. Some portion of the device's measured output impedance may not physically exist within the device; some are artifacts that are due to the chemical ...