When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.

  3. Translation (biology) - Wikipedia

    en.wikipedia.org/wiki/Translation_(biology)

    In prokaryotes (bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the ribosome bind to the mRNA. In eukaryotes, translation occurs in the cytoplasm or across the membrane of the endoplasmic reticulum through a process called co-translational translocation.

  4. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...

  5. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...

  6. Bacterial cell structure - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cell_structure

    The plasma membrane or bacterial cytoplasmic membrane is composed of a phospholipid bilayer and thus has all of the general functions of a cell membrane such as acting as a permeability barrier for most molecules and serving as the location for the transport of molecules into the cell.

  7. Kozak consensus sequence - Wikipedia

    en.wikipedia.org/wiki/Kozak_consensus_sequence

    The scanning mechanism of initiation, which utilizes the Kozak sequence, is found only in eukaryotes and has significant differences from the way bacteria initiate translation. The biggest difference is the existence of the Shine-Dalgarno (SD) sequence in mRNA for bacteria. The SD sequence is located near the start codon which is in contrast to ...

  8. Elongation factor - Wikipedia

    en.wikipedia.org/wiki/Elongation_factor

    Bacteria and eukaryotes use elongation factors that are largely homologous to each other, but with distinct structures and different research nomenclatures. [2] Elongation is the most rapid step in translation. [3] In bacteria, it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second).

  9. Translational regulation - Wikipedia

    en.wikipedia.org/wiki/Translational_regulation

    While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes. Eukaryotic elongation factor 2 (eEF2) is a regulateable GTP -dependent translocase that moves nascent polypeptide chains from the A-site to the P-site in the ribosome.