Ads
related to: cross section to diameter calculator
Search results
Results From The WOW.Com Content Network
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
The area-equivalent radius of a 2D object is the radius of a circle with the same area as the object Cross sectional area of a trapezoidal open channel, red highlights the wetted perimeter, where water is in contact with the channel. The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter.
A circular mil is a unit of area, equal to the area of a circle with a diameter of one mil (one thousandth of an inch or 0.0254 mm). It is equal to π /4 square mils or approximately 5.067 × 10 −4 mm 2. It is a unit intended for referring to the area of a wire with a circular cross section.
In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter : = Where is the cross-sectional area of the pipe and is its wetted perimeter. It is defined such that it reduces to a circular diameter of D for circular pipes.
The length of line of the intersection of channel wetted surface with a cross sectional plane normal to the flow direction. The term wetted perimeter is common in civil engineering, environmental engineering, hydrology, geomorphology, and heat transfer applications; it is associated with the hydraulic diameter or hydraulic radius. Engineers ...
A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...
In a gas of particles of individual diameter 2r, the cross section σ, for collisions is related to the particle number density n, and mean free path between collisions λ. In a gas of finite-sized particles there are collisions among particles that depend on their cross-sectional size. The average distance that a particle travels between ...
From these, it is easy to calculate the area (in cm 2) of the aortic valve by simply dividing the LV stroke volume (in cm 3) by the AV VTI (in cm) measured on the spectral Doppler display using continuous-wave Doppler. [citation needed] Stroke volume = 0.785(π/4) x Diameter 2 x VTI of LVOT Cross sectional area of LVOT = 0.785(π/4) x LVOT ...