When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...

  3. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.

  4. Circular section - Wikipedia

    en.wikipedia.org/wiki/Circular_section

    tri-axial ellipsoid with a circular section. In geometry, a circular section is a circle on a quadric surface (such as an ellipsoid or hyperboloid). It is a special plane section of the quadric, as this circle is the intersection with the quadric of the plane containing the circle. Any plane section of a sphere is a circular section, if it ...

  5. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    A chord (from the Latin chorda, meaning "bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow").

  6. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The two points tracing the cycloids are therefore at equal heights. The line through them is therefore horizontal (i.e. parallel to the two lines on which the circle rolls). Consequently each horizontal cross-section of the circle has the same length as the corresponding horizontal cross-section of the region bounded by the two arcs of cycloids.

  8. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [2] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks. [3]

  9. Borromean rings - Wikipedia

    en.wikipedia.org/wiki/Borromean_rings

    [2] [30] Although it resembles an earlier candidate for minimum ropelength, constructed from four circular arcs of radius two, [31] it is slightly modified from that shape, and is composed from 42 smooth pieces defined by elliptic integrals, making it shorter by a fraction of a percent than the piecewise-circular realization.