When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. London dispersion force - Wikipedia

    en.wikipedia.org/wiki/London_dispersion_force

    Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...

  3. Van der Waals force - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_force

    The van der Waals forces [4] are usually described as a combination of the London dispersion forces between "instantaneously induced dipoles", [5] Debye forces between permanent dipoles and induced dipoles, and the Keesom force between permanent molecular dipoles whose rotational orientations are dynamically averaged over time.

  4. Fritz London - Wikipedia

    en.wikipedia.org/wiki/Fritz_London

    For atoms and nonpolar molecules, the London dispersion force is the only intermolecular force, and is responsible for their existence in liquid and solid states. For polar molecules, this force is one part of the van der Waals force, along with forces between the permanent molecular dipole moments.

  5. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    However, it also has some features of covalent bonding: it is directional, stronger than a van der Waals force interaction, produces interatomic distances shorter than the sum of their van der Waals radii, and usually involves a limited number of interaction partners, which can be interpreted as a kind of valence. The number of Hydrogen bonds ...

  6. Virial expansion - Wikipedia

    en.wikipedia.org/wiki/Virial_expansion

    The three-term virial equation or a cubic virial equation of state = + + has the simplicity of the Van der Waals equation of state without its singularity at v = b. Theoretically, the second virial coefficient represents bimolecular attraction forces, and the third virial term represents the repulsive forces among three molecules in close contact.

  7. Theorem of corresponding states - Wikipedia

    en.wikipedia.org/.../Theorem_of_corresponding_states

    According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree. [1] [2]

  8. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    Proposed in 1873, the van der Waals equation of state was one of the first to perform markedly better than the ideal gas law. In this equation, usually is called the attraction parameter and the repulsion parameter (or the effective molecular volume). While the equation is definitely superior to the ideal gas law and does predict the formation ...

  9. Hamaker constant - Wikipedia

    en.wikipedia.org/wiki/Hamaker_constant

    The Van der Waals forces are effective only up to several hundred angstroms. When the interactions are too far apart, the dispersion potential decays faster than 1 / r 6 ; {\displaystyle 1/r^{6};} this is called the retarded regime, and the result is a Casimir–Polder force .