Search results
Results From The WOW.Com Content Network
Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions; [3] also used for denoting Gödel number; [4] for example “āGā” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they ...
This particular example is true, because 5 is a natural number, and when we substitute 5 for n, we produce the true statement =. It does not matter that " n × n = 25 {\displaystyle n\times n=25} " is true only for that single natural number, 5; the existence of a single solution is enough to prove this existential quantification to be true.
In the latter case, a (declarative) sentence is just one way of expressing an underlying statement. A statement is what a sentence means, it is the notion or idea that a sentence expresses, i.e., what it represents. For example, it could be said that "2 + 2 = 4" and "two plus two equals four" are two different sentences expressing the same ...
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [ b ] [ 6 ] [ 7 ] [ 8 ] Sometimes, it is called first-order propositional logic [ 9 ] to contrast it with System F , but it should not be confused with first-order logic .
A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpretation of the theory. For first-order theories, interpretations are commonly called structures. Given a structure or interpretation, a sentence will have a ...
<statement> is any single statement (could be simple or compound). <sequence> is any sequence of zero or more <statements> Some programming languages provide a general way of grouping statements together, so that any single <statement> can be replaced by a group: Algol 60: begin <sequence> end; Pascal: begin <sequence> end; C, PHP, Java ...
In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side (RHS).