Search results
Results From The WOW.Com Content Network
The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth. Therefore, the horizontal coordinate system is sometimes called the az/el system, [1] the alt/az system, or the alt-azimuth system, among
An altazimuth mount or alt-azimuth mount is a simple two-axis mount for supporting and rotating an instrument about two perpendicular axes – one vertical and the other horizontal. Rotation about the vertical axis varies the azimuth (compass bearing) of the pointing direction of the instrument.
The azimuth is the angle formed between a reference direction (in this example north) and a line from the observer to a point of interest projected on the same plane as the reference direction orthogonal to the zenith. An azimuth (/ ˈ æ z ə m ə θ / ⓘ; from Arabic: اَلسُّمُوت, romanized: as-sumūt, lit.
Altitude-azimuth, alt-azimuth, or alt-az may refer to: Horizontal coordinate system , or altitude-azimuth coordinates Altazimuth mount , a two-axis telescope mount
Polar coordinates are used often in navigation as the destination or direction of travel can be given as an angle and distance from the object being considered. For instance, aircraft use a slightly modified version of the polar coordinates for navigation. In this system, the one generally used for any sort of navigation, the 0° ray is ...
To plot any dot from its spherical coordinates (r, θ, φ), where θ is inclination, the user would: move r units from the origin in the zenith reference direction (z-axis); then rotate by the amount of the azimuth angle (φ) about the origin from the designated azimuth reference direction, (i.e., either the x– or y–axis, see Definition ...
All points along a given azimuth will project along a straight line from the center, and the angle θ that the line subtends from the vertical is the azimuth angle. The distance from the center point to another projected point ρ is the arc length along a great circle between them on the globe.
Given the coordinates of the two points (Φ 1, L 1) and (Φ 2, L 2), the inverse problem finds the azimuths α 1, α 2 and the ellipsoidal distance s. Calculate U 1, U 2 and L, and set initial value of λ = L. Then iteratively evaluate the following equations until λ converges: