When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...

  3. Tutte matrix - Wikipedia

    en.wikipedia.org/wiki/Tutte_matrix

    In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries

  4. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...

  5. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    A perfect matching can only occur when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, part (c) shows a near-perfect matching.

  6. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.

  7. Tutte–Berge formula - Wikipedia

    en.wikipedia.org/wiki/Tutte–Berge_formula

    In the mathematical discipline of graph theory the Tutte–Berge formula is a characterization of the size of a maximum matching in a graph. It is a generalization of Tutte theorem on perfect matchings , and is named after W. T. Tutte (who proved Tutte's theorem) and Claude Berge (who proved its generalization).

  8. NYT ‘Connections’ Hints and Answers Today, Thursday, December 12

    www.aol.com/nyt-connections-hints-answers-today...

    Spoilers ahead! We've warned you. We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT ...

  9. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.