Ads
related to: math pattern generator for kids
Search results
Results From The WOW.Com Content Network
The construction of origami models is sometimes shown as crease patterns. The major question about such crease patterns is whether a given crease pattern can be folded to a flat model, and if so, how to fold them; this is an NP-complete problem. [32] Related problems when the creases are orthogonal are called map folding problems.
Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern reproducible at any magnification or reduction. It is named after the Polish mathematician Wacław Sierpiński but appeared as a decorative pattern many centuries before the work of Sierpiński.
In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation.
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .
For instance, the matrix D = CB moves one out the tree by two nodes (across, then down) in a single step; the characteristic equation of D provides the pattern for the third-order dynamics of any of a, b, or c in the non-exhaustive tree formed by D.
The fern is one of the basic examples of self-similar sets, i.e. it is a mathematically generated pattern that can be reproducible at any magnification or reduction. Like the Sierpinski triangle , the Barnsley fern shows how graphically beautiful structures can be built from repetitive uses of mathematical formulas with computers.