Search results
Results From The WOW.Com Content Network
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
Confidence and prediction bands are often used as part of the graphical presentation of results of a regression analysis. Confidence bands are closely related to confidence intervals, which represent the uncertainty in an estimate of a single numerical value. "As confidence intervals, by construction, only refer to a single point, they are ...
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
The main difference between the two approaches is that the general linear model strictly assumes that the residuals will follow a conditionally normal distribution, [4] while the GLM loosens this assumption and allows for a variety of other distributions from the exponential family for the residuals. [2]
Linear regression can be used to estimate the values of β 1 and β 2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β 1 and β 2; if we take regressors x i = (x i1, x i2) = (t i, t i 2), the model takes on the standard form
The binomial distribution is the basis for the p-chart and requires the following assumptions: [2]: 267 The probability of nonconformity p is the same for each unit; Each unit is independent of its predecessors or successors; The inspection procedure is the same for each sample and is carried out consistently from sample to sample
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
A more complex contrast can test differences among several means (ex. with four means, assigning coefficients of –3, –1, +1, and +3), or test the difference between a single mean and the combined mean of several groups (e.g., if you have four means assign coefficients of –3, +1, +1, and +1) or test the difference between the combined mean ...