Search results
Results From The WOW.Com Content Network
Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
In contrast, a variable is a discrete variable if and only if there exists a one-to-one correspondence between this variable and a subset of , the set of natural numbers. [8] In other words, a discrete variable over a particular interval of real values is one for which, for any value in the range that the variable is permitted to take on, there ...
When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5]: 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of .
The posterior distribution in general describes the parameter in question, and in this case the parameter itself is a discrete probability distribution, i.e. the actual categorical distribution that generated the data. For example, if 3 categories in the ratio 40:5:55 are in the observed data, then ignoring the effect of the prior distribution ...
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example is the set of all integers. [42] Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply.
Suppose there is data from a classroom of 200 students on the amount of time studied (X) and the percentage of correct answers (Y). [4] Assuming that X and Y are discrete random variables, the joint distribution of X and Y can be described by listing all the possible values of p(x i,y j), as shown in Table.3.