Ads
related to: gaussian beam propagation chart free template powerpoint gratis menariksmartdraw.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...
In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
A Gaussian beam has the lowest possible BPP, /, where is the wavelength of the light. [1] The ratio of the BPP of an actual beam to that of an ideal Gaussian beam at the same wavelength is denoted M 2 ("M squared"). This parameter is a wavelength-independent measure of beam quality.
If the beam is distributed in phase space with a Gaussian distribution, the emittance of the beam may be specified in terms of the root mean square value of and the fraction of the beam to be included in the emittance. The equation for the emittance of a Gaussian beam is: [1]: 83
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
An interesting phenomenon related to the filament propagation is the refocusing of focused laser pulses after the geometrical focus. [8] [9] Gaussian Beam propagation predicts an increasing beam width bidirectionally away from the geometric focus. However, in the situation of laser filamentation, the beam will quickly recollapse.