Search results
Results From The WOW.Com Content Network
The entropy of entanglement (or entanglement entropy) is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem.
Entanglement of formation quantifies how much entanglement (measured in ebits) is necessary, on average, to prepare the state. The measure clearly coincides with entanglement entropy for pure states. It is zero for all separable states and non-zero for all entangled states. By construction, is convex.
A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment. [ citation needed ] Neutrinos are elementary particles with extremely small rest mass and a neutral electric charge .
This was dramatically confirmed in the Sudbury Neutrino Observatory (SNO), which has resolved the solar neutrino problem. SNO measured the flux of solar electron neutrinos to be ~34% of the total neutrino flux (the electron neutrino flux measured via the charged current reaction, and the total flux via the neutral current reaction). The SNO ...
The Bekenstein–Hawking entropy is a statement about the gravitational entropy of a system; however, there is another type of entropy that is important in quantum information theory, namely the entanglement (or von Neumann) entropy. This form of entropy provides a measure of how far from a pure state a given quantum state is, or, equivalently ...
The topological entanglement entropy [1] [2] [3] or topological entropy, usually denoted by , is a number characterizing many-body states that possess topological order. A non-zero topological entanglement entropy reflects the presence of long range quantum entanglements in a many-body quantum state.
Work that led to discovery of neutrino oscillation (implying a non-zero mass for the neutrino absent in the Standard Model of particle physics) was motivated by a solar neutrino flux about three times lower than expected from theories — a long-standing concern in the nuclear astrophysics community colloquially known as the Solar neutrino problem.
The Sun performs nuclear fusion via the proton–proton chain reaction, which converts four protons into alpha particles, neutrinos, positrons, and energy.This energy is released in the form of electromagnetic radiation, as gamma rays, as well as in the form of the kinetic energy of both the charged particles and the neutrinos.