Search results
Results From The WOW.Com Content Network
The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses , positions , and velocities . Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements .
If k 2 is greater than one, F 2 − F 1 is a negative number; thus, the added inverse-cube force is attractive, as observed in the green planet of Figures 1–4 and 9. By contrast, if k 2 is less than one, F 2 − F 1 is a positive number; the added inverse-cube force is repulsive , as observed in the green planet of Figures 5 and 10, and in ...
Double layer forces occur between charged objects across liquids, typically water. This force acts over distances that are comparable to the Debye length, which is on the order of one to a few tenths of nanometers. The strength of these forces increases with the magnitude of the surface charge density (or the electrical surface potential). For ...
Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.
The general mathematical form of such inverse-square central forces is = = for a constant , which is negative for an attractive force and positive for a repulsive one. This special case of the classical central-force problem is called the Kepler problem.
In the absence of any other forces, a particle orbiting another under the influence of Newtonian gravity follows the same perfect ellipse eternally. The presence of other forces (such as the gravitation of other planets), causes this ellipse to rotate gradually. The rate of this rotation (called orbital precession) can be measured very accurately.
Repulsive force may refer to: A repulsive force of an accelerating universe, which according to certain theories causes planets and matter to get further and further apart; Like charges repelling according to Coulomb's law; Repulsive force (magnetism) between magnets of opposite orientation
The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive.