Search results
Results From The WOW.Com Content Network
Language convergence is a type of linguistic change in which languages come to resemble one another structurally as a result of prolonged language contact and mutual interference, regardless of whether those languages belong to the same language family, i.e. stem from a common genealogical proto-language. [1]
Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally convergent series.
We first define uniform convergence for real-valued functions, although the concept is readily generalized to functions mapping to metric spaces and, more generally, uniform spaces (see below). Suppose E {\displaystyle E} is a set and ( f n ) n ∈ N {\displaystyle (f_{n})_{n\in \mathbb {N} }} is a sequence of real-valued functions on it.
This concept is often contrasted with uniform convergence.To say that = means that {| () |:} =, where is the common domain of and , and stands for the supremum.That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent.
The most important cases of convergence in r-th mean are: When X n converges in r-th mean to X for r = 1, we say that X n converges in mean to X. When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by ...
Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of (see Fresnel integral).
Technological convergence is the tendency for technologies that were originally unrelated to become more closely integrated and even unified as they develop and advance. For example, watches, telephones, television, computers, and social media platforms began as separate and mostly unrelated technologies, but have converged in many ways into an interrelated telecommunication, media, and ...
Network convergence refers to the provision of telephone, video and data communication services within a single network. In other words, one company provides services for all forms of communication. In other words, one company provides services for all forms of communication.