When.com Web Search

  1. Ad

    related to: applications of electromagnetic waves ppt

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations may be combined to demonstrate how fluctuations in electromagnetic fields (waves) propagate at a constant speed in vacuum, c (299 792 458 m/s [2]). Known as electromagnetic radiation , these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays .

  3. Lens antenna - Wikipedia

    en.wikipedia.org/wiki/Lens_antenna

    The first experiments using lenses to refract and focus radio waves occurred during the earliest research on radio waves in the 1890s. In 1873 mathematical physicist James Clerk Maxwell in his electromagnetic theory, now called Maxwell's equations, predicted the existence of electromagnetic waves and proposed that light consisted of electromagnetic waves of very short wavelength.

  4. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers , or more.

  5. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    Electromagnetic radiation is commonly referred to as "light", EM, EMR, or electromagnetic waves. [2] The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have ...

  6. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    A linearly polarized electromagnetic plane wave propagating parallel to the z-axis is a possible solution for the electromagnetic wave equations in free space. The electric field, E, and the magnetic field, B, are perpendicular to each other and the direction of propagation. Maxwell's equations can be combined to derive wave equations.

  7. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers. In this application, they are minimized with thin plates, by lamination of conductors or other details of conductor shape.

  8. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  9. Radio frequency - Wikipedia

    en.wikipedia.org/wiki/Radio_frequency

    Medical applications of radio frequency (RF) energy, in the form of electromagnetic waves (radio waves) or electrical currents, have existed for over 125 years, [9] and now include diathermy, hyperthermy treatment of cancer, electrosurgery scalpels used to cut and cauterize in operations, and radiofrequency ablation. [10]