When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.

  4. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    Therefore, the dyadic product is linear in both of its operands. In general, two dyadics can be added to get another dyadic, and multiplied by numbers to scale the dyadic. However, the product is not commutative; changing the order of the vectors results in a different dyadic. The formalism of dyadic algebra is an extension of vector algebra to ...

  5. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    It lives in the dual vector space, and represents a linear map from vectors to scalars. The dot product operator involving vectors is a good example of a covector. To illustrate, assume we have a covector defined as v ⋅ {\displaystyle \mathbf {v} \ \cdot } , where v {\displaystyle \mathbf {v} } is a vector.

  6. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    The dot product on is an example of a bilinear form which is also an inner product. [1] An example of a bilinear form that is not an inner product would be the four-vector product. The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms.

  7. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations. [1]

  8. Vector-valued differential form - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_differential...

    The exterior derivative is defined as above on any local trivialization of E. If E is not flat then there is no natural notion of an exterior derivative acting on E-valued forms. What is needed is a choice of connection on E. A connection on E is a linear differential operator taking sections of E to E-valued one forms:

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.