When.com Web Search

  1. Ads

    related to: triangle by coordinates of vertices worksheet printable 1 page

Search results

  1. Results From The WOW.Com Content Network
  2. Desargues's theorem - Wikipedia

    en.wikipedia.org/wiki/Desargues's_theorem

    The ten lines involved in Desargues's theorem (six sides of triangles, the three lines Aa, Bb and Cc, and the axis of perspectivity) and the ten points involved (the six vertices, the three points of intersection on the axis of perspectivity, and the center of perspectivity) are so arranged that each of the ten lines passes through three of the ...

  3. Trilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Trilinear_coordinates

    More generally, if an arbitrary origin is chosen where the Cartesian coordinates of the vertices are known and represented by the vectors ⁠,, ⁠ and if the point P has trilinear coordinates x : y : z, then the Cartesian coordinates of ⁠ ⁠ are the weighted average of the Cartesian coordinates of these vertices using the barycentric ...

  4. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The Nagel triangle or extouch triangle of is denoted by the vertices , , and that are the three points where the excircles touch the reference and where is opposite of , etc. This T A T B T C {\displaystyle \triangle T_{A}T_{B}T_{C}} is also known as the extouch triangle of A B C {\displaystyle \triangle ABC} .

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...

  6. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  7. Fermat point - Wikipedia

    en.wikipedia.org/wiki/Fermat_point

    Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...

  8. Brocard points - Wikipedia

    en.wikipedia.org/wiki/Brocard_points

    The pedal triangles of the first and second Brocard points are congruent to each other and similar to the original triangle. [4] If the lines AP, BP, CP, each through one of a triangle's vertices and its first Brocard point, intersect the triangle's circumcircle at points L, M, N, then the triangle LMN is congruent with the original triangle ABC.

  9. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    By convention only the first of the three trilinear coordinates of a triangle center is quoted since the other two are obtained by cyclic permutation of a, b, c. This process is known as cyclicity. [4] [5] Every triangle center function corresponds to a unique triangle center. This correspondence is not bijective. Different functions may define ...